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Abstract—In 1970, Heppner and Plonsey formulated the first 

model of cardiac tissue that was coupled to a description of the 

membrane currents to study impulse propagation. The model 

was consisted of two cardiac cells separated by a gap junction. 

Their model predicted a gap specific resistance of 4 Ohm- cm2 

was needed for successful transmission, a value similar to the 

value obtained experimentally. In 1984, Barr and Plonsey 

presented the first model of propagation in two-dimensional 

cardiac tissue that incorporated both the intracellular and 

interstitial spaces. This model recapitulated the theoretical 

predictions of Muler and Markin, and demonstrated that the 

conductivities of both spaces impact the flow of membrane 

currents. These two important contributions have led to the 

rapid development of tissue models to assist in uncovering the 

mechanisms of arrhythmia and defibrillation. Here we present 

models of cardiac tissue that combines details of cell shape and 

gap junction distributions with a representation of the 

extracellular space. Such models may be useful to understand 

how disease induced changes in the tissue microstructure impact 

propagation and arrhythmogenesis. 
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I. INTRODUCTION  

The first model of cardiac tissue that included a biophysically 

inspired model of the membrane was developed by Heppner 

and Plonsey in 1970 to elucidate the magnitude of the gap 

junction conductance needed to support propagation [1]. The 

model consisted of two “cells” connected by a resistive gap 

junction region and incorporated a simple model of the 

membrane currents as given by Noble [2]. The model 

predicted changes in the action potential upstroke, such as the 

presence or pre-potentials, resulting from transmission across 

the gap that would be shown experimentally by Spach and 

colleagues almost a decade later [3].  

 

The effect of the gap junction on both normal and abnormal 

impulse propagation became an important focus of cardiac 

electrophysiology for the next 40 years. Experimental 

evidence emerged showing a relationship between cardiac 

structure and arrhythmogenesis in the heart [4]. These 

experiments also drove the development of computer models 

to become increasingly realistic. Unfortunately, computational 

constraints forced certain choices about how best to represent 

the tissue mathematically [5]. The early two and three-

dimensional models ignored the details of cellular architecture 

and considered the tissue as a continuum. One advantage of 

this description was the ability to apply traditional numerical 

methods like finite differences and finite elements. One 

feature of tissue structure that was challenging to incorporate 

in multi-dimensional tissue models was the interstitial space. 

In 1969, Otto Schmidt presented a conceptual model of 

cardiac tissue where the intracellular and interstitial spaces 

could be described as “interpenetrating domains’’ that 

occupied the same physical space and were coupled through 

the membrane [6]. To enable this representation, the electrical 

properties of each domain would need to be scaled 

appropriately to the new volume. Muler and Markin 

formalized this model of a bi-syncytium and predicted the 

effect of different degrees of anisotropy in both spaces on the 

shape of a wavefront of propagation in two dimensions [7]. In 

1984, Barr and Plonsey [8] developed a computer model of a 

sheet of bi-syncytial tissue (termed by Tung for cardiac 

muscle as the bidomain [9]) in which the intracellular and 

interstitial spaces were connected by an excitable membrane 

represented by a Hodgkin Huxley model [10]. The model 

showed that properties of the interstitial space not only 

affected the wavefront as predicted by Muler and Markin but 

also affected the time course of the action potential. The active 

bidomain model has allowed the ability to study the effects of 

extracellular stimuli or fields on wavefront initiation and 

dynamics as well as understand the basis of clinically recorded 

extracellular waveforms on the heart surface,   

 

The majority of cardiac tissue models have assumed mostly 

normal or idealized cardiac structure. There is growing 

evidence, however, that a number of arrhythmias like atrial 

fibrillation (AF) are a consequence of changes in tissue 

structure, primarily fibrosis, due to aging or disease [11]. The 

disease process leads to changes in the extracellular/interstitial 

environment, such as the deposition of collagen and changes 

in the distribution and the magnitude of the gap junction 

conductances connecting cells. The increased heterogeneity in 

both spaces affect the speed and direction of wavefront 

propagation and enhance the likelihood of the formation of 

small zones of localized conduction failure or anchors for 

reentry, producing a substrate that is prone to arrhythmia. To 

capture the diseased induced changes in structure, the next 

generation of tissue models will need to be formulated to 

incorporate the heterogeneity of properties of both spaces. In 

this work, we briefly explore some of the approaches that 

could be used to model the microstructural changes associated 

with disease. 

 



II. MODELS 

 

The bidomain model was formally developed under 

the assumption that the intracellular and interstitial spaces are 

continuous [12]. Specifically, the bidomain model consists of 

the equations for the intra- and interstitial/extracellular 

potentials, i  and e , coupled through the transmembrane 

potential, eimV = , for  
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x  and 0>t :   

  (1)(2) 

where 
dR  ( 0>d ) is the bounded physical domain 

occupied by the cardiac tissue; q  is a set of state variables 

such as ionic concentrations which define the physiological 

state of the cellular structures;   is a surface-to-volume ratio 

of cardiac cells, mC  is the membrane capacitance per unit 

area and iD , eD  are  specific conductivity tensors in intra- 

and extracellular spaces respectively; ),( qVI mion  and 

),( qVmM  are functions approximating the cellular membrane 

dynamics.  

 

A. 1D and 2D Discontinuous Bidomain 

 

While the bidomain usually represents a continuum, the 

concept can be extended to discrete or heterogeneous tissue. 

Spach, et al.  developed a “2-domain” model of cardiac tissue 

in which a monolayer of myocytes connected via gap 

junctions was linked to passive capillaries through an 

interstitial space [13]. The model showed that the resistance of 

the capillary wall and the physical separation of the active and 

passive layers both affected the shape of the rising phase of 

the action potential. These results suggested for the first time 

that the loading effects of passive elements such as capillaries 

and fibroblasts in the interstitial region could affect the 

propagating impulse.  

 

Simulations have also revealed that extracellular properties 

can modulate the effects of the intracellular heterogeneities. 

For example, Hubbard et al. showed in a 1D bidomain that 

uniformly increasing the interstitial resistivity causes an 

increase in intracellular delay, but a decrease in gap junction 

delay [14].  In poorly-coupled fibers, this translates to a 

flattening of conduction velocity that is not observed in 

continuum models with increased interstitial resistivity, 

suggesting a need for discrete models in diseased regions of 

tissue with high source-load mismatch. 

 

 

B. 3D Discontinuous Bidomain 

 

Hooks et. al. simulated wavefront propagation in a three-

dimensional discontinuous bidomain representing a slab of 

tissue that was reconstructed from confocal data [15]. 

Anisotropy in the intracellular and extracellular architecture 

was defined with spatially varying conductivity tensors that 

incorporated fiber rotation and intracellular discontinuity 

across interlaminar clefts in the extracellular space. The model 

represented disruption of cellular connections across cleavage 

planes by removing elements of the trilinear mesh from the 

intracellular domain and applying no-flux boundary conditions 

along the resulting internal intracellular domain boundaries. 

The model suggested that clefts between layers of myocytes 

can alter the flow of current provide and much like 

intracellular discontinuities like gap junctions, could provide 

an additional mechanism for bulk activation of tissue during 

defibrillation 

 

C. 3D Bundle Model 

 
One of the key assumptions of the bidomain model is that two 
spaces are be defined to occupy the same physical space. In 
tissue, the interstitial spaces are typically 10-20% of the total 
volume fraction [16]. By allowing both spaces to occupy the 
total volume, it is possible to use the same spatial 
discretization. However, one approach to incorporating 
interstitial and intracellular heterogeneity is to represent each 
domain a spatially distinct.  

Wang et al. developed a model of a bundle of coupled and 
uncoupled cardiac fibers embedded in a uniform extracellular 
space [17]. Instead of using a bidomain model, they applied the 
boundary element method where only the surface membrane of 
each fiber was discretized. They assumed one active fiber 
surrounded by passive fibers and found that when the when the 
fibers were uncoupled with an inter-fiber spacing of 1 nm, the 
conduction velocity was 15% slower for a fiber inside the 
bundle compared to a fiber near the surface. When the fibers 
were coupled, however, conduction velocity was the same for 
internal and surface fibers and the velocity was slightly larger 
than the conduction velocity of the uncoupled inner fiber. 
Although conduction velocity was the same, the wavefront was 
concaved and waveshape characteristics varied with depth into 
the bundle core. Wang et al. showed that an unequal 
distribution of extracellular space created a interstitial gradient 
transverse to the bundle, increasing the load felt by the outer 
fibers. While these results were consistent with those obtained 
using a bidomain with an adjoining bath [18], the method 
provides a framework for representing each space as spatially 
distinct. 



D. 3D Microdomain 

One disadvantage of the BEM approach is that it requires 
that the interstitial domain have homogenous properties. The 
incorporation of heterogeneous properties in the interstitial 
space in 3D requires a different method such as finite elements. 
Stinstra et al. [19] used an FEM approach to extend the model 
of Spach et al. into three dimensions.  In the model, 64 or 132 
myocytes were stacked inside an extracellular matrix such that, 
at some locations, the myocytes adjoined neighboring cells 
while in other regions there were small laminar sheets of 
extracellular space separating myocytes. The model can be 
viewed as multiple non-overlapping compartments: a single 
compartment for the extracellular space and separate 
compartments for each myocyte in the model. Here Laplace’s 
equation holds for the intracellular and extracellular spaces, 
namely 

Ñ×s iÑFi = 0,

Ñ×s eÑFe = 0
                                                              (2) 

where 𝜎𝑖  and 𝜎𝑒  are the intracellular and interstitial 
conductivities, respectively. For the surfaces separating the 
intracellular and extracellular spaces, the following set of 
boundary conditions apply. 

(s iÑFi ) × n̂ = -(s eÑFe ) × n̂ = Im

=Cm
d(Fi -Fe )

dt
+ Iion (Vm,q)

           (3) 

where 𝐼𝑚 is the membrane current, and 𝑛̂ is the normal vector 
at the boundary. For boundaries separating two myocytes, a 
surface resistance and capacitance associated with the gap 
junction current 𝐼𝑔𝑎𝑝  gives rise to the following   conditions 

connecting cell 1 to cell 2, namely 

 

(s i2ÑFi2 ) × n̂ = Igap=

Cgap
d(Fi1 -Fi2 )

dt
+ g12(Fi1 -Fi2 )

 (4) 

 

(s i2ÑFi2 ) × n̂ = -Igap=

-Cgap
d(Fi1 -Fi2 )

dt
- g12 (Fi1 -Fi2 )

  (5) 

where 𝑔12 and 𝐶𝑔𝑎𝑝 are the gap conductance between the two 

cells and the gap specific capacitance, respectively.  

The model was shown to give rise to experimentally measured 
propagation velocities using only parameters from histology 
and allows the ability to compute both intracellular and 
extracellular potentials. This histologically realistic model 
allows for the inclusion of specific variations in myocyte size 
and coupling, and other cell types and compartments (e.g. 
fibroblasts and capillaries) that may be affected by disease. 

III. DISCUSSION 

Models of cardiac tissue have exhibited rapid growth over the 

past four decades. The bidomain approach has been used to 

represent realistic heart geometries and fiber orientations. The 

membrane models describing the ion fluxes have grown in 

sophistication including Markov state descriptions of channel 

mutations [20].  These bidomain models are being used in 

combination with experiments to elucidate mechanisms of 

arrhythmia and to design or optimize new therapeutic 

interventions [21].   Despite the sophistication, however, there 

is no consensus as to how best to incorporate the 

microstructural changes that accompany ischemia, infarction 

or disease. Because both simulation and experiments have 

shown conclusively that propagation is profoundly affected by 

the tissue properties, the 3D microdomain model represents an 

important step in the evolution of cardiac tissue models. 

Although not computationally tractable to extend to a whole 

heart, the 3D microdomain can be used to determine how 

microstructural changes of shape, structure, or cellular 

composition are best converted into the associated bidomain 

parameters. Alternatively, the microdomain model may need 

to be embedded into the bidomain in scenarios that involve 

critical regimes of conduction failure due to the discrete 

structure. Regardless of the approach, the use of the 

microdomain model will require better information as to how 

disease affects the intracellular and interstitial spaces at a 

microscopic level. Advances in optical imaging and 

immunohistochemistry offer hope that this information can be 

obtained in a relatively straightforward manner. But until then, 

tissue models will make use of incomplete knowledge of 

critical parameters affecting conduction and as a consequence 

may limit the predictive power.  It is important that structural 

models of the heart evolve in manner analogous to models of 

the membrane so that they can serve as a better tool in 

understanding the mechanisms of arrhythmia.  
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